

Arnite® T06 200

PBT Envalior

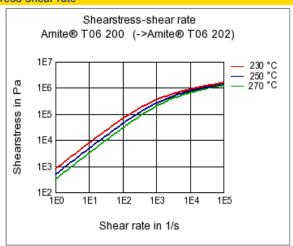
Product Texts

Low Viscosity, Injection Molding, Extrusion, Food Contact Quality

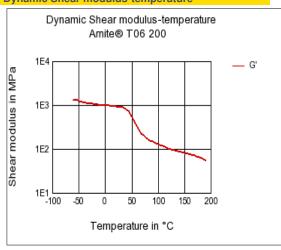
Rheological properties	Value	Unit	Test Standard
SO Data			100 4400
Melt volume-flow rate, MVR	22	cm³/10min	ISO 1133
Temperature	250	°C	-
Load	2.16	kg	-
Molding shrinkage, parallel	1.8	%	ISO 294-4, 2577
Molding shrinkage, normal	1.8	%	ISO 294-4, 2577
Mechanical properties	Value	Unit	Test Standard
SO Data	value	Offit	rest Standard
Tensile Modulus	2700	MPa	ISO 527
Yield stress	55	MPa	ISO 527
Yield strain	3.5	%	ISO 527
Nominal strain at break	>50	%	ISO 527
Charpy impact strength, +23°C	N	kJ/m²	ISO 179/1eU
Charpy impact strength, -30°C	N	kJ/m²	ISO 179/1eU
Charpy notched impact strength, +23°C	5	kJ/m²	ISO 179/1eA
Charpy notched impact strength, -30°C	5	kJ/m²	ISO 179/1eA
- 11. 17. 11. 11. 11. 11. 11. 11. 11. 11.			
Thermal properties	Value	Unit	Test Standard
SO Data			
Melting temperature, 10°C/min	225	°C	ISO 11357-1/-3
Temp. of deflection under load, 1.80 MPa	55	°C	ISO 75-1/-2
Temp. of deflection under load, 0.45 MPa	165	°C	ISO 75-1/-2
Coeff. of linear therm. expansion, parallel	90	E-6/K	ISO 11359-1/-2
Coeff. of linear therm. expansion, normal	90	E-6/K	ISO 11359-1/-2
Burning behav. at 1.5 mm nom. thickn.	НВ	class	IEC 60695-11-10
Thickness tested	1.5	mm	-
Yellow Card available	yes	-	-
Burning behav. at thickness h	НВ	class	IEC 60695-11-10
Thickness tested	3.0	mm	-
Yellow Card available	yes	-	-
Electrical properties SO Data	Value	Unit	Test Standard
Relative permittivity, 100Hz	3.5	-	IEC 62631-2-1
Relative permittivity, 1MHz	3.2	-	IEC 62631-2-1
Dissipation factor, 100Hz	20	E-4	IEC 62631-2-1
Dissipation factor, 1MHz	200	E-4	IEC 62631-2-1
Volume resistivity	>1E13	Ohm*m	IEC 62631-3-1
Electric strength	27	kV/mm	IEC 60243-1
Comparative tracking index	600	-	IEC 60112
Other properties	Value	Unit	Test Standard
SO Data			
Nater absorption Humidity absorption	0.45 0.18	%	Sim. to ISO 62 Sim. to ISO 62

Created: 2025-03-11 Source: www.materialdatacenter.com

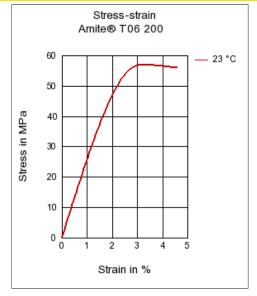
Arnite® T06 200 PBT Envalior


Rheological calculation properties ISO Data	Value	Unit	Test Standard
Density of melt	1040	kg/m³	-
Thermal conductivity of melt	0.109	W/(m K)	-
Spec. heat capacity of melt	2260	J/(kg K)	-
Eff. thermal diffusivity	4.65E-8	m²/s	-

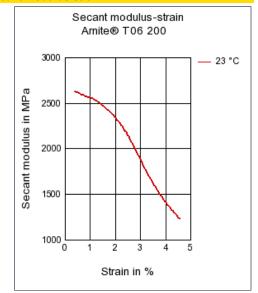
Diagrams

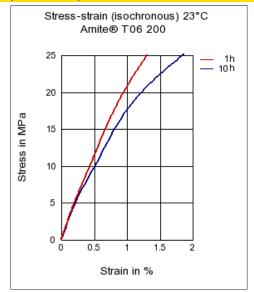

Viscosity-shear rate

Viscosity-shear rate Arnite® T06 200 (->Arnite® T06 202) 1E3 230 °C 250 °C 270 °C 270 °C Shear rate in 1/s

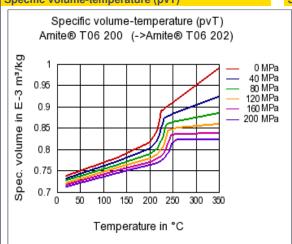

Shearstress-shear rate

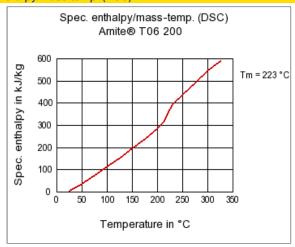
Dynamic Shear modulus-temperature


Stress-strain


Arnite® T06 200

PBT Envalior


Secant modulus-strain


Stress-strain (isochronous) 23°C

Specific volume-temperature (pvT)

Spec. enthalpy/mass-temp. (DSC)

Characteristics

Processing

 $\label{eq:condition} \mbox{Injection Molding, Film Extrusion, Other Extrusion}$

Delivery form

Pellets

Other text information

Injection Molding

Injection Molding Recommendations

Steel recommendations for molds screws and barrels

Supporting document for Stanyl quality processing

Film extrusion

Extrusion Guideline for Arnite® T-grades

Chemical Media Resistance

Alcohols

Methanol (23°C)

Ethanol (23°C)

Hydrocarbons

Toluene (23°C)

<mark>Arnit</mark> PBT	te® T06 200	Envalior
Ethers		Zirvanor
\odot	Diethyl ether (23°C)	
Other		
\odot	Water (23°C)	